首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   30篇
  国内免费   1篇
  2021年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   8篇
  2012年   6篇
  2011年   3篇
  2010年   11篇
  2009年   7篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   9篇
  2000年   6篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   2篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1983年   2篇
  1982年   3篇
  1981年   7篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1967年   2篇
  1954年   1篇
  1950年   1篇
  1933年   1篇
  1924年   1篇
  1923年   1篇
排序方式: 共有248条查询结果,搜索用时 31 毫秒
11.
Hormonal Regulation of Pedicel Abscission in Begonia Flower Buds   总被引:1,自引:0,他引:1  
In order to analyse the hormonal regulation of flower bud shedding in Begonia, levels of indoleacetic acid (IAA), abscisic acid (ABA) and ethylene were determined in buds and pedicels. The translocation and metabolism of 14C-labeled IAA in pedicel segments were also studied. In a monoecious Begonia fuchsioides hybrid, abscising male flower buds contain about 1% of the IAA present in non-abscising female flowers. In a male Begonia davisii hybrid, the seasonal variation in bud drop coincides with changes in the IAA content of the buds, while also the release of IAA from the bud to the pedicel is hampered. Abscission zones of these pedicels always contain abscission promoting ethylene concentrations. The tissue is prevented from responding with abscission by IAA from the flower buds. The buds also contain ABA but without influencing abscission considerably. Pretreatment with ethylene or ABA does not affect IAA transport in pedicel segments. The rate of this transport is 4–6 mm × h–1:; the capacity increases with the transverse area. In young segments, IAA is decarboxylated and also otherwise metabolized.  相似文献   
12.
ON THE EARLY GROWTH RATE OF THE INDIVIDUAL FUNGUS HYPHA   总被引:1,自引:0,他引:1  
  相似文献   
13.
Based on work with cotton fibers, a particulate form of sucrose (Suc) synthase was proposed to support secondary wall cellulose synthesis by degrading Suc to fructose and UDP-glucose. The model proposed that UDP-glucose was then channeled to cellulose synthase in the plasma membrane, and it implies that Suc availability in cellulose sink cells would affect the rate of cellulose synthesis. Therefore, if cellulose sink cells could synthesize Suc and/or had the capacity to recycle the fructose released by Suc synthase back to Suc, cellulose synthesis might be supported. The capacity of cellulose sink cells to synthesize Suc was tested by analyzing the Suc phosphate synthase (SPS) activity of three heterotrophic systems with cellulose-rich secondary walls. SPS is a primary regulator of the Suc synthesis rate in leaves and some Suc-storing, heterotrophic organs, but its activity has not been previously correlated with cellulose synthesis. Two systems analyzed, cultured mesophyll cells of Zinnia elegans L. var. Envy and etiolated hypocotyls of kidney beans (Phaseolus vulgaris), contained differentiating tracheary elements. Cotton (Gossypium hirsutum L. cv Acala SJ-1) fibers were also analyzed during primary and secondary wall synthesis. SPS activity rose in all three systems during periods of maximum cellulose deposition within secondary walls. The Z. elegans culture system was manipulated to establish a tight linkage between the timing of tracheary element differentiation and rising SPS activity and to show that SPS activity did not depend on the availability of starch for degradation. The significance of these findings in regard to directing metabolic flux toward cellulose will be discussed.  相似文献   
14.
The objective of the present study was to explore the site of synthesis of vitellogenin (Vtg) in fresh water edible crab, Oziothelphusa senex senex. Vtg cDNA fragments were isolated from the hepatopancreas of female crabs using RT-PCR method, and the deduced amino acid sequence of O. senex senex showed more than 60% identity with other brachyuran Vtg sequences. RT-PCR analysis showed that Vtg mRNA can be detected only in hepatopancreas of female Oziothelphusa but not in other tissues including eyestalks, Y-organs, mandibular organs, thoracic ganglion, hypodermis and ovary. Antibodies were raised against vitellin purified from the ovary of O. senex senex. Immunoprecipitation analysis revealed the presence of Vtg in the hepatopancreas of vitellogenic stage I females and in the hemolymph, hepatopancreas and ovary extracts from vitellogenic stage II females but absent in hemolymph and hepatopancreas extract of males. These results suggest that Vtg is synthesized only in hepatopancreas but not in the ovaries of O. senex senex. In addition, Vtg synthesized in hepatopancreas is transported to ovary through hemolymph.  相似文献   
15.
The human endonexin II (ENX2) gene is located at 4q28----q32   总被引:1,自引:0,他引:1  
A relatively recently identified family of structurally similar Ca2(+)-dependent phospholipid binding proteins is called the annexin gene family. At least seven genes are known, although their exact functions are unclear. The endonexin II gene (ENX2), one member of the gene family, is assigned to 4q28----q32 using both Southern transfer analysis of human x rodent somatic cell hybrid DNAs and in situ chromosome hybridization. One of the lipocortin II genes, another annexin, had previously been assigned to the long arm of chromosome 4.  相似文献   
16.
The annexins are a family of phospholipid- and Ca2+-binding proteins that are structurally related. Two members of this family, human endonexin II and chicken anchorin CII, may arise from the same gene by alternative splicing of two structurally unrelated segments.  相似文献   
17.
18.
A 30-residue nitroxide scan encompassing a helical hairpin and an extended loop in soluble annexin 12 (helices D and E in repeat 2; residues 134-163) has been analyzed in terms of nitroxide side chain mobility and accessibility to collision with paramagnetic reagents (Pi). Values of Pi for both O(2) and a Ni(II) metal complex (NiEDDA) are remarkably well correlated with the fractional solvent accessibility of the native side chains at the corresponding positions computed from the known crystal structure. This result demonstrates the utility of Pi as an experimental measure of side chain accessibility in solution, as well as the lack of structural perturbation due to the presence of the nitroxide side chain. The pattern of side chain mobility is also in excellent agreement with predictions from the crystal structure. The results presented here extend the correlations between mobility and structure described in earlier work on other helical proteins, and suggest their generality. The periodic dependence of Pi and mobility along the sequence of annexin 12 reveals the helical segments and their orientation in the fold, as expected for a nonperturbing nitroxide side chain. However, these data do not distinguish the helix-loop-helix motif from a continuous helix, because immobilized side chains in the short loop sequence maintain the periodicity. As shown here, the ratio of Pi values for O(2) and NiEDDA clearly delineates the loop region, due to size exclusion effects between the two reagents. A new feature evident in a nitroxide scan through multiple secondary elements is a modulation of the basic Pi and mobility patterns along the sequence, apparently due to differences in helix packing and backbone motion. Thus, in the short helix D, residues are consistently more mobile and accessible throughout the sequence compared to the residues in the longer, less-solvated and more ordered helix E.  相似文献   
19.
Annexins are soluble proteins that can interact with membranes in a Ca2+-dependent manner. Recent studies have shown that they can also undergo Ca2+-independent membrane interactions that are modulated by pH and phospholipid composition. Here, we investigated the structural changes that occurred during Ca2+-independent interaction of annexin B12 with phospholipid vesicles as a function of pH. Electron paramagnetic resonance analysis of a helical hairpin encompassing the D and E helices in the second repeat of the protein showed that this region refolded and formed a continuous amphipathic alpha helix following Ca2+-independent binding to membranes at mildly acidic pH. At pH 4.0, this helix assumed a transmembrane topography, but at pH approximately 5.0-5.5, it was peripheral and approximately parallel to the membrane. The peripheral form was reversibly converted into the transmembrane form by lowering the pH and vice versa. Furthermore, analysis of vesicles incubated with annexin B12 using freeze-fracture electron microscopy methods showed classical intramembrane particles at pH 4.0 but none at pH 5.3. Together, these data raise the possibility that the peripheral-bound form of annexin B12 could act as a kinetic intermediate in the formation of the transmembrane form of the protein.  相似文献   
20.
Summary.  Methods for cryogenic fixation, freeze substitution, and embedding were developed to preserve the cellular structure and protein localization of secondary-wall-stage cotton (Gossypium hirsutum L.) fibers accurately for the first time. Perturbation by specimen handling was minimized by freezing fibers still attached to a seed fragment within 2 min after removal of seeds from a boll still attached to the plant. These methods revealed native ultrastructure, including numerous active Golgi bodies, multivesicular bodies, and proplastids. Immunolocalization in the context of accurate structure was accomplished after freeze substitution in acetone only. Quantitation of immunolabeling identified sucrose synthase both near the cortical microtubules and plasma membrane and in a proximal exoplasmic zone about 0.2 μm thick. Immunolabeling also showed that callose (β-1,3-glucan) was codistributed with sucrose synthase within this exoplasmic zone. Similar results were obtained from cultured cotton fibers. The distribution of sucrose synthase is consistent with its having a dual role in cellulose and callose synthesis in secondary-wall-stage cotton fibers. Received August 19, 2002; accepted November 12, 2002; published online June 13, 2003 RID="*" ID="*" Correspondence and reprints: Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, U.S.A. E-mail: candace.haigler@ttu.edu  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号